Sensory habituation of auditory receptor neurons: implications for sound localization.
نویسندگان
چکیده
Auditory receptor neurons exhibit sensory habituation; their responses decline with repeated stimulation. We studied the effects of sensory habituation on the neural encoding of sound localization cues using crickets as a model system. In crickets, Teleogryllus oceanicus, sound localization is based on binaural comparison of stimulus intensity. There are two potential codes at the receptor-neuron level for interaural intensity difference: interaural difference in response strength, i.e. spike rate and/or count, and interaural difference in response latency. These are affected differently by sensory habituation. When crickets are stimulated with cricket-song-like trains of sound pulses, response strength declines for successive pulses in the train, and the decrease becomes more pronounced as the stimulus intensity increases. Response decrement is thus greater for receptors serving the ear ipsilateral to the sound source, where intensity is higher, resulting in a decrease in the interaural difference in response strength. Sensory habituation also affects response latency, which increases for responses to successive sound pulses in the stimulus train. The change in latency is independent of intensity, and thus is similar for receptors serving both ears. As a result, interaural latency difference is unaffected by sensory habituation and may be a more reliable cue for sound localization.
منابع مشابه
Mechanisms of sound localization in mammals.
The ability to determine the location of a sound source is fundamental to hearing. However, auditory space is not represented in any systematic manner on the basilar membrane of the cochlea, the sensory surface of the receptor organ for hearing. Understanding the means by which sensitivity to spatial cues is computed in central neurons can therefore contribute to our understanding of the basic ...
متن کاملMatrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.
UNLABELLED Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in ...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملDifferent Profiles of Verbal and Nonverbal Auditory Impairment in Cortical and Subcortical Lesions
A B S T R A C T Introduction:We investigated differential role of cortical and subcortical regions in verbal and non-verbal sound processing in ten patients who were native speakers of Persian with unilateral cortical and/or unilateral and bilateral subcortical lesions and 40 normal speakers as control subjects. Methods: The verbal tasks included monosyllabic, disyllabic dichotic and diotic tas...
متن کاملThe Role of TRP Channels in Auditory Transduction and Amplification in Drosophila
Auditory receptor cells rely on force-gated channels to transform sound stimuli into neural activity. These primary auditory neurons form the first stage of the neural circuits that support a host of higher-order functions, such as the localization of sound or the comprehension of speech. The mechanisms of sound transduction, as well as higher-order processes such as acoustic communication duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 17 شماره
صفحات -
تاریخ انتشار 2000